Spatial Behavior

 

Real-life spatial behaviors are complex. To study the neural mechanisms that support ethologically relevant forms of navigation we utilize an exquisite aerial navigator – the bat, and study its relevant neural circuits using a combination of cutting-edge behavioral and neurophysiological methodologies. At the behavioral level, we developed a fully automated, human-free, foraging environment where either a single bat or multiple bats can engage in natural and unconstrained forms of navigation. Utilizing an array of high-speed video cameras, real-time tracking systems and ultrasonic microphones we can carefully monitor the position, motion and sensory signals of the navigating bats at fine spatial and temporal resolutions. We combine this with the establishment of wireless electrophysiological recordings methods in single and multi-animal settings as well as with our recent development of wireless calcium imaging methods in freely flying bats. We further pioneered tools for causal-genetic manipulation in bats which allow us to begin addressing the necessity and sufficiency of neural circuits during complex spatial behaviors. Combining these approaches, we aim to study how mammalian neural circuits participate and contribute to complex spatial behaviors at both the individual and group level.

Group Sociality and Communication    

 

Many species, including humans, naturally live and socialize in groups yet the brain is rarely studied under natural group social conditions. Bats are well suited for this study as they are long-lived mammals (25-40 years) that spend the majority of their lives in group social living. Additionally, they have evolved a dedicated vocal communication system (which is separate from their echolocation abilities) that is exclusively utilized

Screen Shot 2021-07-01 at 13.51.44.png

for social interaction. To study collective social behavior and communication we pioneered approaches for multi-animal wireless neural recordings and behavioral monitoring that enable studying multiple brains simultaneously under natural and unconstrained social conditions. Doing so presents us with a unique opportunity to study the neural computations underlying group social behavior.

Vocal Plasticity and Learning

    

Acoustic communication between individuals is necessary for survival. Under real-life conditions conditions, such interactions are usually bidirectional, employ the usage of diverse species-specific communication signals and often occur between individuals of varying social bonds. In some rare cases, as is the case for humans, these acoustic signals are learnedOur species of bats possess a rich and diverse vocabulary of different acoustic communication signals that are used during social interactions between individuals. Further, unlike the overwhelming majority of non-human mammals, the bat vocalizations are potentially learned from conspecifics. This unique feature allows us to study the detailed mammalian neural circuits supporting this core human function. 

Building on our recent development of behavioral and neurophysiological methods we aim to understand how these signals are learned and then used under natural social conditions. 

Neurophysiological Methods

    

Miniaturized Wireless Electrophysiology

Optogenetics

Circuit Mapping Using Tracing and Molecular Methods

Miniaturized Calcium Imaging    

Funding    

We are grateful for the generous support of our research through the following organizations:

taxo_BRAIN-Initiative.png
vallee-foundation_logo.jpg
bakarlightbulbsquarewhite.jpg
NIH_logo.png
375px-Office_of_Naval_Research_Official_